论文标题

融合系统中某些表示的不可销

Nonrealizability of certain representations in fusion systems

论文作者

Oliver, Bob

论文摘要

对于有限的Abelian $ p $ -group $ a $和子组$γ\ le \ text {aut}(a)$,我们说,如果有饱和的融合系统$ \ nathcal {f} $,则可以实现这对$(γ,a)$是可以实现的。 $ \ textrm {aut} _ {\ Mathcal {f}}(a)=γ$作为$ \ text {aut}(a)$的子组,而$ a $在$ \ Mathcal {f} $中不正常。在本文中,我们开发了工具,以表明某些表示在这个意义上是不可实现的。例如,我们表明,$ p = 2 $或$ 3 $和$γ$是Mathieu组之一,唯一的$ \ mathbb {f}_pγ$ - 模块可融合可实现(琐碎模块的扩展)是TODD模块,在某些情况下是其Duals。

For a finite abelian $p$-group $A$ and a subgroup $Γ\le\text{Aut}(A)$, we say that the pair $(Γ,A)$ is fusion realizable if there is a saturated fusion system $\mathcal{F}$ over a finite $p$-group $S\ge A$ such that $C_S(A)=A$, $\textrm{Aut}_{\mathcal{F}}(A)=Γ$ as subgroups of $\text{Aut}(A)$, and $A$ is not normal in $\mathcal{F}$. In this paper, we develop tools to show that certain representations are not fusion realizable in this sense. For example, we show, for $p=2$ or $3$ and $Γ$ one of the Mathieu groups, that the only $\mathbb{F}_pΓ$-modules that are fusion realizable (up to extensions by trivial modules) are the Todd modules and in some cases their duals.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源