论文标题
通过将iSovalue约束纳入泊松方程,指定正常方向和表面重建
Point normal orientation and surface reconstruction by incorporating isovalue constraints to Poisson equation
论文作者
论文摘要
定向的正态是基于点云(例如泊松表面重建)的许多几何算法的常见先决条件。但是,获得一致的方向并不小。在这项工作中,我们在隐式空间中弥合了定向和重建,并通过将iSovalue约束纳入泊松方程来提出一种新颖的方法来实现点云正常。在隐式表面重建中,重建形状表示为在环境空间中定义的隐式函数的同性面。因此,当从一组样品点重建这样的表面时,该点处的隐式函数值应接近与表面相对应的isOvalue。基于此观察结果和泊松方程,我们提出了一种优化公式,将Isovalue约束与局部一致性要求相结合。我们同时优化正态和隐式函数,并求解全球一致的方向。由于线性系统的稀疏性,我们的方法可以在平均笔记本电脑上使用合理的计算时间来工作。实验表明,我们的方法可以在不均匀和嘈杂的数据中实现高性能,并管理变化的采样密度,伪影,多个连接的组件和嵌套表面。源代码可在\ url {https://github.com/submanifold/isoconstraints}中获得。
Oriented normals are common pre-requisites for many geometric algorithms based on point clouds, such as Poisson surface reconstruction. However, it is not trivial to obtain a consistent orientation. In this work, we bridge orientation and reconstruction in the implicit space and propose a novel approach to orient point cloud normals by incorporating isovalue constraints to the Poisson equation. In implicit surface reconstruction, the reconstructed shape is represented as an isosurface of an implicit function defined in the ambient space. Therefore, when such a surface is reconstructed from a set of sample points, the implicit function values at the points should be close to the isovalue corresponding to the surface. Based on this observation and the Poisson equation, we propose an optimization formulation that combines isovalue constraints with local consistency requirements for normals. We optimize normals and implicit functions simultaneously and solve for a globally consistent orientation. Thanks to the sparsity of the linear system, our method can work on an average laptop with reasonable computational time. Experiments show that our method can achieve high performance in non-uniform and noisy data and manage varying sampling densities, artifacts, multiple connected components, and nested surfaces. The source code is available at \url{https://github.com/Submanifold/IsoConstraints}.