论文标题
基于家庭的指纹分析:位置文件
Family-Based Fingerprint Analysis: A Position Paper
论文作者
论文摘要
每月向安全存储库(例如国家漏洞数据库)报告成千上万的漏洞。在这些漏洞中,软件错误配置是Web应用程序的十大安全风险之一。随着大量脆弱性报告的大量涌入,软件指纹识别已成为发现独特而有效的签名并识别据报道脆弱的软件实现的一种高度期望的能力。由于指纹匹配的指数性最差复杂性,设计更有效的指纹方法变得非常可取,尤其是对于可选功能可变性特征为其分析增加了另一个指数因素的可变性密集型系统。该立场论文介绍了我们对一个框架的愿景,该框架将模型学习和基于家庭的分析原理提升为软件指纹。在此框架中,我们将签名的数据库提议为有限的状态机,并使用存在条件指定是否观察到给定的输入输出跟踪以及在何种情况下。我们认为,基于功能的签名可以通过减少分析指纹的大小来帮助改善性能。
Thousands of vulnerabilities are reported on a monthly basis to security repositories, such as the National Vulnerability Database. Among these vulnerabilities, software misconfiguration is one of the top 10 security risks for web applications. With this large influx of vulnerability reports, software fingerprinting has become a highly desired capability to discover distinctive and efficient signatures and recognize reportedly vulnerable software implementations. Due to the exponential worst-case complexity of fingerprint matching, designing more efficient methods for fingerprinting becomes highly desirable, especially for variability-intensive systems where optional features add another exponential factor to its analysis. This position paper presents our vision of a framework that lifts model learning and family-based analysis principles to software fingerprinting. In this framework, we propose unifying databases of signatures into a featured finite state machine and using presence conditions to specify whether and in which circumstances a given input-output trace is observed. We believe feature-based signatures can aid performance improvements by reducing the size of fingerprints under analysis.