论文标题
级联的多模式混合变压器,用于阿尔茨海默氏病分类,数据不完整
Cascaded Multi-Modal Mixing Transformers for Alzheimer's Disease Classification with Incomplete Data
论文作者
论文摘要
准确的医学分类需要大量的多模式数据,在许多情况下,需要不同的特征类型。先前的研究表明,当使用多模式数据时,在对诸如阿尔茨海默氏病(AD)等疾病进行分类时的表现优于单模式模型。但是,这些模型通常不够灵活,无法处理缺失的方式。当前,最常见的解决方法是丢弃缺失模式的样本,从而导致大量数据不足。除了标记的医学图像已经稀缺的事实外,可以严重阻碍数据驱动的方法的性能。因此,非常需要在各种临床环境中处理丢失数据的多模式方法。在本文中,我们提出了多模式混合变压器(3MAT),这是一种疾病分类变压器,不仅利用多模式数据,而且还处理缺失的数据情景。在这项工作中,我们使用临床和神经影像数据测试了3MT的AD和认知正常(CN)分类(CN)分类(MCI)转换为进行性MCI(PMCI)或稳定的MCI(SMCI)。该模型使用带有跨注意的新型级联模式变压器体系结构来结合多模式信息,以实现更明智的预测。我们提出了一种新型的模态辍学机制,以确保前所未有的模态独立性和鲁棒性来处理缺失的数据情景。结果是一个多功能网络,该网络可以使任意数量的模式与不同的特征类型的混合,并确保完整的数据利用率丢失了数据方案。该模型通过SOTRA性能在ADNI数据集上进行了训练和评估,并使用AIBL数据集进行了进一步评估,并且缺少数据。
Accurate medical classification requires a large number of multi-modal data, and in many cases, different feature types. Previous studies have shown promising results when using multi-modal data, outperforming single-modality models when classifying diseases such as Alzheimer's Disease (AD). However, those models are usually not flexible enough to handle missing modalities. Currently, the most common workaround is discarding samples with missing modalities which leads to considerable data under-utilization. Adding to the fact that labeled medical images are already scarce, the performance of data-driven methods like deep learning can be severely hampered. Therefore, a multi-modal method that can handle missing data in various clinical settings is highly desirable. In this paper, we present Multi-Modal Mixing Transformer (3MAT), a disease classification transformer that not only leverages multi-modal data but also handles missing data scenarios. In this work, we test 3MT for AD and Cognitively normal (CN) classification and mild cognitive impairment (MCI) conversion prediction to progressive MCI (pMCI) or stable MCI (sMCI) using clinical and neuroimaging data. The model uses a novel Cascaded Modality Transformer architecture with cross-attention to incorporate multi-modal information for more informed predictions. We propose a novel modality dropout mechanism to ensure an unprecedented level of modality independence and robustness to handle missing data scenarios. The result is a versatile network that enables the mixing of arbitrary numbers of modalities with different feature types and also ensures full data utilization missing data scenarios. The model is trained and evaluated on the ADNI dataset with the SOTRA performance and further evaluated with the AIBL dataset with missing data.