论文标题

在有限温度下剪切流中的狭窄囊泡的数值研究

Numerical study of a confined vesicle in shear flow at finite temperature

论文作者

Lamura, A.

论文摘要

在有限温度下研究了狭窄的剪切流中狭窄的囊泡的动力学和流变学。研究了有限温度对囊泡运动和系统粘度的影响。一个二维数值模型,包括热波动,并基于分子动力学和介质流体动力学的组合,用于在广泛的PECLET数字中进行详细的分析(剪切速率与旋转扩散系数的比率)。悬浮粘度被认为是粘度对比度的单调增加功能(由于不同温度消除机制的相互作用,在储罐径向上的粘度与周围流体的粘度与周围流体的粘度之比)和周围流体的粘度之比。热效应诱导囊泡的形状和倾斜度波动,这也经历了布朗在整个通道中的扩散,从而增加了粘度。这些效果在增加小子数时会减少。

The dynamics and rheology of a vesicle confined in a channel under shear flow are studied at finite temperature. The effect of finite temperature on vesicle motion and system viscosity is investigated. A two-dimensional numerical model, which includes thermal fluctuations and is based on a combination of molecular dynamics and mesoscopic hydrodynamics, is used to perform a detailed analysis in a wide range of the Peclet numbers (the ratio of the shear rate to the rotational diffusion coefficient). The suspension viscosity is found to be a monotonous increasing function of the viscosity contrast (the ratio of the viscosity of the encapsulated fluid to that of the surrounding fluid) both in the tank-treading and the tumbling regime due to the interplay of different temperature-depending mechanisms. Thermal effects induce shape and inclination fluctuations of the vesicle which experiences also Brownian diffusion across the channel increasing the viscosity. These effects reduces when increasing the Peclet number.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源