论文标题
Lambdakg:基于预训练的基于语言模型的知识图嵌入的库
LambdaKG: A Library for Pre-trained Language Model-Based Knowledge Graph Embeddings
论文作者
论文摘要
知识图(kgs)通常具有两个特征:异质图结构和文本丰富的实体/关系信息。基于文本的KG嵌入可以通过使用预训练的语言模型编码描述来代表实体,但是目前没有专门为具有PLM的KG设计的开源库。在本文中,我们介绍了Lambdakg,这是KGE的图书馆,该库为许多预训练的语言模型(例如Bert,Bart,T5,GPT-3),并支持各种任务(例如,知识图完成,问题答案,建议,建议,建议和知识探测)。 lambdakg在https://github.com/zjunlp/promptkg/tree/main/main/lambdakg上公开开放,并在http://deepke.zjukg.cn/lambdakg.mp4 and Longenth and Longermentabence和长期维护和长期维护和长期维护。
Knowledge Graphs (KGs) often have two characteristics: heterogeneous graph structure and text-rich entity/relation information. Text-based KG embeddings can represent entities by encoding descriptions with pre-trained language models, but no open-sourced library is specifically designed for KGs with PLMs at present. In this paper, we present LambdaKG, a library for KGE that equips with many pre-trained language models (e.g., BERT, BART, T5, GPT-3), and supports various tasks (e.g., knowledge graph completion, question answering, recommendation, and knowledge probing). LambdaKG is publicly open-sourced at https://github.com/zjunlp/PromptKG/tree/main/lambdaKG, with a demo video at http://deepke.zjukg.cn/lambdakg.mp4 and long-term maintenance.