论文标题
在最小剧烈的和弦图上
On minimally tough chordal graphs
论文作者
论文摘要
卡托纳(Katona)和瓦尔加(Varga)表明,在(1/2,1] $中,任何有理数的$ t \ in(1/2,1] $中,没有弦图是最小的$ t $ - t $ tough,而katona和khan的特征是所有最小的$ t $ t $ -tough,带有$ t \ le 1/2 $的和弦图。特别是,我们表明,对于任何$ t> 1/2 $,没有强烈的弦图是最小的$ t $ -tough%,没有分式图是最小的$ t $ - tugh,并且带有通用顶点的无弦图是最小的$ t $。
Katona and Varga showed that for any rational number $t \in (1/2,1]$, no chordal graph is minimally $t$-tough, while Katona and Khan characterized all minimally $t$-tough, chordal graphs with $t \le 1/2$. We conjecture that no chordal graph is minimally $t$-tough for any $t>1$ and prove several results supporting the conjecture. In particular, we show that for any $t>1/2$, no strongly chordal graph is minimally $t$-tough%, no split graph is minimally $t$-tough, and no chordal graph with a universal vertex is minimally $t$-tough.