论文标题

辫子,熵和纤维纤维的2倍分支盖的3型物体

Braids, entropies and fibered 2-fold branched covers of 3-manifolds

论文作者

Hirose, Susumu, Kin, Eiko

论文摘要

Sakuma和Brooks证明,任何可封闭的定向$ 3 $ manifold,heegaard of genus $ g $ ables $ 2 $ fold的分支封面,是双曲线$ 3 $ manifold和一个$ g $ g $ g $ surface bundle the Circle of Circle的封面。本文涉及伪anosov monodromies的熵,用于双曲光纤$ 3 $ -Manifolds。我们证明,存在无限的许多封闭式定向$ 3 $ manifolds $ m $,因此,所有双曲线,$ g $ g $ scristar bundles的最小熵在圆圈上,$ 2 $折成$ 3 $ -manifold $ m $的分支封面可与$ 1/g $相当。

It is proved by Sakuma and Brooks that any closed orientable $3$-manifold with a Heegaard splitting of genus $g$ admits a $2$-fold branched cover that is a hyperbolic $3$-manifold and a genus $g$ surface bundle over the circle. This paper concerns entropy of pseudo-Anosov monodromies for hyperbolic fibered $3$-manifolds. We prove that there exist infinitely many closed orientable $3$-manifolds $M$ such that the minimal entropy over all hyperbolic, genus $g$ surface bundles over the circle as $2$-fold branched covers of the $3$-manifold $M$ is comparable to $1/g$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源