论文标题

用于利用贝叶斯优化中并行实验的新范例

New Paradigms for Exploiting Parallel Experiments in Bayesian Optimization

论文作者

González, Leonardo D., Zavala, Victor M.

论文摘要

贝叶斯优化(BO)是闭环实验设计和黑盒优化的最有效方法之一。但是,BO的关键局限性是它是一种固有的顺序算法(每轮提出了一个实验),因此无法直接利用高通量(并行)实验。文献中已经提出了对BO框架的各种修改,以实现并行实验,但是这种方法在可以实现的并行程度上受到限制,并可能导致冗余实验(从而浪费资源并可能损害性能)。在这项工作中,我们提出了新的平行BO范式,以利用系统的结构来分区设计空间。具体而言,我们提出了一种方法,该方法通过遵循性能函数的级别集和一种利用所找到性能函数部分可分离结构的方法来分区设计空间。我们使用反应堆案例研究进行了广泛的数值实验,以基准这些方法的有效性,以针对文献中报道的各种最新的平行算法。我们的计算结果表明,我们的方法大大减少了所需的搜索时间,并增加了找到全局(而不是本地)解决方案的可能性。

Bayesian optimization (BO) is one of the most effective methods for closed-loop experimental design and black-box optimization. However, a key limitation of BO is that it is an inherently sequential algorithm (one experiment is proposed per round) and thus cannot directly exploit high-throughput (parallel) experiments. Diverse modifications to the BO framework have been proposed in the literature to enable exploitation of parallel experiments but such approaches are limited in the degree of parallelization that they can achieve and can lead to redundant experiments (thus wasting resources and potentially compromising performance). In this work, we present new parallel BO paradigms that exploit the structure of the system to partition the design space. Specifically, we propose an approach that partitions the design space by following the level sets of the performance function and an approach that exploits partially-separable structures of the performance function found. We conduct extensive numerical experiments using a reactor case study to benchmark the effectiveness of these approaches against a variety of state-of-the-art parallel algorithms reported in the literature. Our computational results show that our approaches significantly reduce the required search time and increase the probability of finding a global (rather than local) solution.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源