论文标题

部分可观测时空混沌系统的无模型预测

MultiLoad-GAN: A GAN-Based Synthetic Load Group Generation Method Considering Spatial-Temporal Correlations

论文作者

Hu, Yi, Li, Yiyan, Song, Lidong, Lee, Han Pyo, Rehm, PJ, Makdad, Matthew, Miller, Edmond, Lu, Ning

论文摘要

本文提出了一个深度学习框架,多载生成对抗网络(多弹药),用于同时生成一组合成负载概况(SLP)。多弹药的主要贡献是捕获一组由同一分布变压器提供的载荷之间的时空相关性。这使生成了微电网和分配系统研究所需的大量相关SLP。多加载框架的新颖性和独特性是三倍。首先,据我们所知,这是产生同时具有现实时空相关性的一组负载曲线的第一种方法。其次,开发了两个用于评估生成的负载概况的互补现实度指标:基于域知识的计算统计信息,并通过深度学习分类器比较高级特征。第三,为了解决数据稀缺性,开发了一种新型的迭代数据增强机制,以生成训练样本,以增强分类器和多弹药模型的训练。仿真结果表明,多弹药可以比现有方法产生更现实的负载曲线,尤其是在小组级别特征中。几乎没有填充,可以很容易地扩展多弹药,从而为馈线或服务区域生成一组负载或PV配置文件。

This paper presents a deep-learning framework, Multi-load Generative Adversarial Network (MultiLoad-GAN), for generating a group of synthetic load profiles (SLPs) simultaneously. The main contribution of MultiLoad-GAN is the capture of spatial-temporal correlations among a group of loads that are served by the same distribution transformer. This enables the generation of a large amount of correlated SLPs required for microgrid and distribution system studies. The novelty and uniqueness of the MultiLoad-GAN framework are three-fold. First, to the best of our knowledge, this is the first method for generating a group of load profiles bearing realistic spatial-temporal correlations simultaneously. Second, two complementary realisticness metrics for evaluating generated load profiles are developed: computing statistics based on domain knowledge and comparing high-level features via a deep-learning classifier. Third, to tackle data scarcity, a novel iterative data augmentation mechanism is developed to generate training samples for enhancing the training of both the classifier and the MultiLoad-GAN model. Simulation results show that MultiLoad-GAN can generate more realistic load profiles than existing approaches, especially in group level characteristics. With little finetuning, MultiLoad-GAN can be readily extended to generate a group of load or PV profiles for a feeder or a service area.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源