论文标题

通过奇异积分和最大函数在分层组上刻薄的产品的表征

Characterizations of product Hardy spaces on stratified groups by singular integrals and maximal functions

论文作者

Cowling, Michael G., Fan, Zhijie, Li, Ji, Yan, Lixin

论文摘要

在欧几里得空间产品上,强大空间理论的很大一部分已扩展到分层谎言组的产品的设置。这包括通过平方函数和原子分解来表征强壮的空间,证明具有BMO的耐力空间的双重性以及对许多插值空间的描述。然而,到目前为止,经典理论的两个方面显然没有:通过奇异的积分来表征(基督 - 类型)或(垂直或垂直或非行为)最大函数的刻薄空间。在本文中,我们使用Chen,Cowling,Lee,Li,Li和Ottazzi在Heisenberg Group上具有国旗结构的想法来填补这些空白。

A large part of the theory of Hardy spaces on products of Euclidean spaces has been extended to the setting of products of stratified Lie groups. This includes characterisation of Hardy spaces by square functions and by atomic decompositions, proof of the duality of Hardy spaces with BMO, and description of many interpolation spaces. Until now, however, two aspects of the classical theory have been conspicuously absent: the characterisation of Hardy spaces by singular integrals (of Christ--Geller type) or by (vertical or nontangential) maximal functions. In this paper we fill in these gaps by developing new techniques on products of stratified groups, using the ideas of Chen, Cowling, Lee, Li and Ottazzi on the Heisenberg group with flag structure.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源