论文标题
部分可观测时空混沌系统的无模型预测
Material Properties of Organic Liquids, Ices, and Hazes on Titan
论文作者
论文摘要
储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。
Titan has a diverse range of materials in its atmosphere and on its surface: the simple organics that reside in various phases (gas, liquid, ice) and the solid complex refractory organics that form Titan's haze layers. These materials all actively participate in various physical processes on Titan, and many material properties are found to be important in shaping these processes. Future in-situ exploration on Titan would likely encounter a range of materials, and a comprehensive database to archive the material properties of all possible material candidates will be needed. Here we summarize several important material properties of the organic liquids, ices, and the refractory hazes on Titan that are available in the literature and/or that we have computed. These properties include thermodynamic properties (phase change points, sublimation and vaporization saturation vapor pressure, and latent heat), physical property (density), and surface properties (liquid surface tensions and solid surface energies). We have developed a new database to provide a repository for these data and make them available to the science community. These data can be used as inputs for various theoretical models to interpret current and future remote sensing and in-situ atmospheric and surface measurements on Titan. The material properties of the simple organics may also be applicable to giant planets and icy bodies in the outer solar system, interstellar medium, protoplanetary disks, and exoplanets.