论文标题

用于系统概括的神经符号递归机器

Neural-Symbolic Recursive Machine for Systematic Generalization

论文作者

Li, Qing, Zhu, Yixin, Liang, Yitao, Wu, Ying Nian, Zhu, Song-Chun, Huang, Siyuan

论文摘要

当前的学习模型通常会与类似人类的系统概括斗争,尤其是从有限的数据中学习组成规则并将其推断为新型组合。我们介绍了神经符号递归机器(NSR),其核心是接地的符号系统(GSS),可以直接从训练数据中出现组合语法和语义的出现。 NSR采用模块化设计,该设计整合了神经感知,句法解析和语义推理。这些组件通过一种新型的推论算法进行协同训练。我们的发现表明,NSR的设计充满了均衡和组成性的感应偏见,它使其具有熟练处理多样化的序列到序列任务并实现无与伦比的系统概括的表现力。我们评估了NSR跨四个旨在探测系统概括功能的挑战性基准的功效:扫描语义解析,用于字符串操纵的PCFG,用于算术推理的提示和组成机器翻译任务。结果肯定了NSR优于当代神经和混合模型,从概括和转移性方面。

Current learning models often struggle with human-like systematic generalization, particularly in learning compositional rules from limited data and extrapolating them to novel combinations. We introduce the Neural-Symbolic Recursive Machine (NSR), whose core is a Grounded Symbol System (GSS), allowing for the emergence of combinatorial syntax and semantics directly from training data. The NSR employs a modular design that integrates neural perception, syntactic parsing, and semantic reasoning. These components are synergistically trained through a novel deduction-abduction algorithm. Our findings demonstrate that NSR's design, imbued with the inductive biases of equivariance and compositionality, grants it the expressiveness to adeptly handle diverse sequence-to-sequence tasks and achieve unparalleled systematic generalization. We evaluate NSR's efficacy across four challenging benchmarks designed to probe systematic generalization capabilities: SCAN for semantic parsing, PCFG for string manipulation, HINT for arithmetic reasoning, and a compositional machine translation task. The results affirm NSR's superiority over contemporary neural and hybrid models in terms of generalization and transferability.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源