论文标题
在安静的太阳的3D模拟中实现加速的粒子梁
Implementing accelerated particle beams in a 3D simulation of the quiet Sun
论文作者
论文摘要
语境。太阳大气中的磁场不断重新连接并加速带电的颗粒高能。在三个维度上对大气的模拟,包括加速颗粒的影响可以帮助我们理解能量粒子梁与它们出现并传播的环境之间的相互作用。我们在先前的论文中提出了这种模拟的第一次尝试,强调了粒子梁的物理模型。但是,由于大气中的不同条件以及我们必须在多个CPU内核之间分配计算的方式,因此该模型的数值实现并不直接。目标。在这里,我们描述并验证了我们通过域分解并行的3D磁水动力学代码在3D磁水动力学代码中对能量传输的数值实现。方法。我们使用具有自适应步长控制的runge-kutta方案跟踪梁轨迹,并使用混合分析和数值方法沿着轨迹整合沉积的束能量。为此,我们使用旨在优化数据流的缓冲系统横跨由单独过程拥有的子域的横梁传输。结果。使用具有分析场线的临时磁场作为测试场景,我们表明我们的自适应跟踪的平行实现有效地遵循具有高精度的具有挑战性的轨迹。通过使用不同数量的过程的电子束传输的定时执行,我们发现该过程以最小的开销进行通信,但是由于梁的空间分布引起的工作负载不平衡,平行可伸缩性仍然是额定性的。
Context. The magnetic field in the solar atmosphere continually reconnects and accelerates charged particles to high energies. Simulations of the atmosphere in three dimensions that include the effects of accelerated particles can aid our understanding of the interplay between energetic particle beams and the environment where they emerge and propagate. We presented the first attempt at such a simulation in a previous paper, emphasising the physical model of particle beams. However, the numerical implementation of this model is not straightforward due to the diverse conditions in the atmosphere and the way we must distribute computation between multiple CPU cores. Aims. Here, we describe and verify our numerical implementation of energy transport by electron beams in a 3D magnetohydrodynamics code parallelised by domain decomposition. Methods. We trace beam trajectories using a Runge-Kutta scheme with adaptive step length control and integrate deposited beam energy along the trajectories with a hybrid analytical and numerical approach. To parallelise this, we coordinate beam transport across subdomains owned by separate processes using a buffering system designed to optimise data flow. Results. Using an ad hoc magnetic field with analytical field lines as a test scenario, we show that our parallel implementation of adaptive tracing efficiently follows a challenging trajectory with high precision. By timing executions of electron beam transport with different numbers of processes, we found that the processes communicate with minimal overhead but that the parallel scalability is still sublinear due to workload imbalance caused by the uneven spatial distribution of beams.