论文标题

部分可观测时空混沌系统的无模型预测

Explaining Patterns in Data with Language Models via Interpretable Autoprompting

论文作者

Singh, Chandan, Morris, John X., Aneja, Jyoti, Rush, Alexander M., Gao, Jianfeng

论文摘要

大型语言模型(LLM)表现出令人印象深刻的利用自然语言来执行复杂任务的能力。在这项工作中,我们探讨了我们是否可以利用这种学习的能力来查找和解释数据中的模式。具体而言,给定预先训练的LLM和数据示例,我们引入了可解释的自动爆发(IPROMPT),这是一种生成自然语言字符串的算法,解释了数据。 IPMPT迭代在用LLM生成解释和根据其提示时的性能将其重新升级之间交替。从合成数学到自然语言理解,在各种数据集上进行了实验,表明IPROMPT可以通过准确找到地面图数据集描述来产生有意义的见解。此外,IPROMPT产生的提示同时具有人性化和高效的概括:在现实世界情感分类数据集上,IPROMPT会产生提示,这些提示可以匹配甚至可以改善GPT-3的人为编写的提示。最后,使用功能磁共振成像数据集进行的实验显示了IPRMETS有助于科学发现的潜力。使用此处使用这些方法和数据的所有代码都在GitHub上提供。

Large language models (LLMs) have displayed an impressive ability to harness natural language to perform complex tasks. In this work, we explore whether we can leverage this learned ability to find and explain patterns in data. Specifically, given a pre-trained LLM and data examples, we introduce interpretable autoprompting (iPrompt), an algorithm that generates a natural-language string explaining the data. iPrompt iteratively alternates between generating explanations with an LLM and reranking them based on their performance when used as a prompt. Experiments on a wide range of datasets, from synthetic mathematics to natural-language understanding, show that iPrompt can yield meaningful insights by accurately finding groundtruth dataset descriptions. Moreover, the prompts produced by iPrompt are simultaneously human-interpretable and highly effective for generalization: on real-world sentiment classification datasets, iPrompt produces prompts that match or even improve upon human-written prompts for GPT-3. Finally, experiments with an fMRI dataset show the potential for iPrompt to aid in scientific discovery. All code for using the methods and data here is made available on Github.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源