论文标题

可区分的射线播放,以预测自我监督的占用预测

Differentiable Raycasting for Self-supervised Occupancy Forecasting

论文作者

Khurana, Tarasha, Hu, Peiyun, Dave, Achal, Ziglar, Jason, Held, David, Ramanan, Deva

论文摘要

安全自动驾驶的运动计划需要学习周围的自我车辆周围的环境如何随着时间的流逝而发展。以自我为中心的对场景中可驱动区域的感知不仅随环境中的演员的运动而变化,而且随着自我车辆本身的运动而改变。为大规模计划(例如以自我为中心的自由空间)提出的自我监督的表示,将这两个动作混淆了,这使得代表难以用于下游运动计划者。在本文中,我们使用几何占用率作为依赖视图的自然替代品,例如自由空间。占用地图自然会使环境的运动与自我车辆的运动脱离。但是,人们无法直接观察场景的完整3D占用(由于遮挡),因此很难用作学习的信号。我们的关键见解是使用可区分的射线播放来将未来的占用预测“渲染”到未来的LiDAR扫描预测中,可以将其与自我监督学习的地面扫描进行比较。使用可区分的光线播种可以使占用率成为预测网络中的内部表示形式。在没有地面占用率的情况下,我们定量评估了对射线激光雷达的预测,并显示出高达15 f1点的改善。对于下游运动规划师,可以直接用于指导不可驱动的区域,而与以自由式空间为中心的运动计划者相比,此表示相对将与对象的碰撞数量最多减少17%。

Motion planning for safe autonomous driving requires learning how the environment around an ego-vehicle evolves with time. Ego-centric perception of driveable regions in a scene not only changes with the motion of actors in the environment, but also with the movement of the ego-vehicle itself. Self-supervised representations proposed for large-scale planning, such as ego-centric freespace, confound these two motions, making the representation difficult to use for downstream motion planners. In this paper, we use geometric occupancy as a natural alternative to view-dependent representations such as freespace. Occupancy maps naturally disentangle the motion of the environment from the motion of the ego-vehicle. However, one cannot directly observe the full 3D occupancy of a scene (due to occlusion), making it difficult to use as a signal for learning. Our key insight is to use differentiable raycasting to "render" future occupancy predictions into future LiDAR sweep predictions, which can be compared with ground-truth sweeps for self-supervised learning. The use of differentiable raycasting allows occupancy to emerge as an internal representation within the forecasting network. In the absence of groundtruth occupancy, we quantitatively evaluate the forecasting of raycasted LiDAR sweeps and show improvements of upto 15 F1 points. For downstream motion planners, where emergent occupancy can be directly used to guide non-driveable regions, this representation relatively reduces the number of collisions with objects by up to 17% as compared to freespace-centric motion planners.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源