论文标题

发现:通过增强的加固学习,深刻识别象征性简洁的开型PDE

DISCOVER: Deep identification of symbolically concise open-form PDEs via enhanced reinforcement-learning

论文作者

Du, Mengge, Chen, Yuntian, Zhang, Dongxiao

论文摘要

复杂自然系统的工作机制倾向于遵守简洁而深刻的部分微分方程(PDE)。直接从数据中挖掘方程的方法称为PDE Discovery,它揭示了一致的物理定律并促进了我们与自然世界的适应性互动。在本文中,提出了一个增强的深钢筋学习框架,以发现象征性地简洁的式PDE,几乎没有先验知识。特别是,基于基本运算符和操作数的符号库,设计并与稀疏的回归方法无缝地设计了结构感知的经常性神经网络代理,以生成简洁和开放形式的PDE表达式。所有生成的PDE都通过平衡适应性与数据和简约的精心设计的奖励功能进行评估,并通过基于模型的强化学习以有效的方式进行更新。制定了定制的约束和法规,以确保PDE在物理和数学方面的合理性。该实验表明,即使具有具有出色效率的复合方程式,分数结构和高阶衍生物,我们的框架也能够挖掘几个动态系统的式构建方程式,即使具有优异的效率。在不需要先验知识的情况下,这种方法在更为复杂的情况下具有出色的效率和可扩展性显示出巨大的知识发现潜力。

The working mechanisms of complex natural systems tend to abide by concise and profound partial differential equations (PDEs). Methods that directly mine equations from data are called PDE discovery, which reveals consistent physical laws and facilitates our adaptive interaction with the natural world. In this paper, an enhanced deep reinforcement-learning framework is proposed to uncover symbolically concise open-form PDEs with little prior knowledge. Particularly, based on a symbol library of basic operators and operands, a structure-aware recurrent neural network agent is designed and seamlessly combined with the sparse regression method to generate concise and open-form PDE expressions. All of the generated PDEs are evaluated by a meticulously designed reward function by balancing fitness to data and parsimony, and updated by the model-based reinforcement learning in an efficient way. Customized constraints and regulations are formulated to guarantee the rationality of PDEs in terms of physics and mathematics. The experiments demonstrate that our framework is capable of mining open-form governing equations of several dynamic systems, even with compound equation terms, fractional structure, and high-order derivatives, with excellent efficiency. Without the need for prior knowledge, this method shows great potential for knowledge discovery in more complicated circumstances with exceptional efficiency and scalability.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源