论文标题

通过双重相似性转移弱射击语义分割

Weak-shot Semantic Segmentation via Dual Similarity Transfer

论文作者

Chen, Junjie, Niu, Li, Zhou, Siyuan, Si, Jianlou, Qian, Chen, Zhang, Liqing

论文摘要

语义分割是一项重要且普遍的任务,但在扩展到更广泛的应用程序中的更多类时,像素级注释的成本很高。为此,我们专注于名为“弱点语义分段”的问题,在该问题中,新颖的类是从更便宜的图像级标签中学到的,并支持具有现成的像素级标签的基础类的支持。为了解决此问题,我们提出了SimFormer,该示例器在掩码方面执行双重相似性转移。具体而言,蒙版将语义细分任务分为两个子任务:针对每个建议的建议分类和建议分割。提案分割允许提案像素的相似性从基本类别转移到新的类别,从而使掩盖新颖的类别学习。我们还从基本类别学习了像素像素的相似性,并将这种类不足的语义相似性提炼到新颖类的语义面具,该类别的语义蒙版将分割模型与图像之间的像素级语义关系定向。此外,我们提出了互补的损失,以促进学习新课程的学习。关于具有挑战性的可可-STUFF-10K和ADE20K数据集的全面实验证明了我们方法的有效性。代码可在https://github.com/bcmi/simformer-weak-shot-semantic-mentemation中找到。

Semantic segmentation is an important and prevalent task, but severely suffers from the high cost of pixel-level annotations when extending to more classes in wider applications. To this end, we focus on the problem named weak-shot semantic segmentation, where the novel classes are learnt from cheaper image-level labels with the support of base classes having off-the-shelf pixel-level labels. To tackle this problem, we propose SimFormer, which performs dual similarity transfer upon MaskFormer. Specifically, MaskFormer disentangles the semantic segmentation task into two sub-tasks: proposal classification and proposal segmentation for each proposal. Proposal segmentation allows proposal-pixel similarity transfer from base classes to novel classes, which enables the mask learning of novel classes. We also learn pixel-pixel similarity from base classes and distill such class-agnostic semantic similarity to the semantic masks of novel classes, which regularizes the segmentation model with pixel-level semantic relationship across images. In addition, we propose a complementary loss to facilitate the learning of novel classes. Comprehensive experiments on the challenging COCO-Stuff-10K and ADE20K datasets demonstrate the effectiveness of our method. Codes are available at https://github.com/bcmi/SimFormer-Weak-Shot-Semantic-Segmentation.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源