论文标题
相对于$ c $ - $ fp_n $ - 注射和$ c $ - $ fp_ {n} $ - 平面模块
Foxby equivalence relative to $C$-$fp_n$-injective and $C$-$fp_{n}$-flat modules
论文作者
论文摘要
令$ r $和$ s $为戒指,$ c = {} _sc_r $ a(忠实)半单字化bimodule,$ n $ a正整数或$ n = \ \ infty $。在本文中,我们介绍了$ c $ - $ fp_n $ -Indimentive $ r $ - modules和$ c $ - $ fp_n $ -flat $ s $ s $ modules,作为一些已知模块的普遍化,例如$ c $ - $ c $ - $ fp_ {n} $ - $ c $ - $ c $ - $ - $ - $ - $ - $ c $ - $ fp_ {n} $ - flat(resp。$ c $ -weak flat)$ s $ modules。然后,我们研究$ c $ - $ fp_ {n} $ - 注入和$ c $ - $ fp_ {n} $ - 模块的平面尺寸,其中这些模块的类别,即$ cfp_ni(r)_ {\ leq k} $和$ cfp_nf(r)_ {\ leq k} $和$ cfp_nf(s)我们研究了相对于这些类别的Foxby等效性,以及$ cfp_ni(r)_ {\ leq k} $和$ cfp_nf(s)_ {\ leq k} $ preendevens and Covers的存在。最后,我们研究了这些类别的交换特性,以及在几乎出色的环范围内,在几乎出色的范围下,在额外的范围内(分别为重剂)和狐狸等效性。
Let $R$ and $S$ be rings, $C= {}_SC_R$ a (faithfully) semidualizing bimodule, and $n$ a positive integer or $n=\infty$. In this paper, we introduce the concepts of $C$-$fp_n$-injective $R$-modules and $C$-$fp_n$-flat $S$-modules as a common generalization of some known modules such as $C$-$FP_{n}$-injective (resp. $C$-weak injective) $R$-modules and $C$-$FP_{n}$-flat (resp. $C$-weak flat) $S$-modules. Then we investigate $C$-$fp_{n}$-injective and $C$-$fp_{n}$-flat dimensions of modules, where the classes of these modules, namely $Cfp_nI(R)_{\leq k}$ and $Cfp_nF(S)_{\leq k}$, respectively. We study Foxby equivalence relative to these classes, and also the existence of $Cfp_nI(R)_{\leq k}$ and $Cfp_nF(S)_{\leq k}$ preenvelopes and covers. Finally, we study the exchange properties of these classes, as well as preenvelopes (resp. precovers) and Foxby equivalence, under almost excellent extensions of rings.