论文标题
量化孔 - 动作引起的挫败感在哈密顿重建的掺杂反铁磁铁中
Quantifying hole-motion-induced frustration in doped antiferromagnets by Hamiltonian reconstruction
论文作者
论文摘要
揭示由自旋和运动自由度相互作用的量子相的微观起源构成了密切相关的多体物理学的主要挑战之一。当孔穿过抗磁性自旋背景时,它们会置换自旋的位置,从而在磁性环境中引起有效的挫败感。但是,在量子多体系统中,这种效果的具体表征仍然是一个未解决的问题。在这里,我们提出了一种汉密尔顿重建方案,该方案允许精确量化孔 - 运动引起的挫败感。我们通过对多体状态的投影测量来访问非本地相关函数,在将磁性背景脱离显性电荷波动之后,可以从中回收有效的自旋 - 汉米顿。该方案应用于混合维度的系统,其中孔仅限于一个维度移动,但是SU(2)superexchange是二维的。我们证明,孔运动将旋转背景驱动到高度沮丧的状态,可以通过有效的$ J_1-J_2- $类型旋转模型进行定量描述。我们通过恢复实验获得的有效的自旋 - 汉米顿人来体现了重建方案对超低原子实验的适用性,从而获得了1D费米 - 哈伯德的快照。我们的方法可以推广到完全2D系统,从而使掺杂的哈伯德模型具有有希望的微观观点。
Unveiling the microscopic origins of quantum phases dominated by the interplay of spin and motional degrees of freedom constitutes one of the central challenges in strongly correlated many-body physics. When holes move through an antiferromagnetic spin background, they displace the positions of spins, which induces effective frustration in the magnetic environment. However, a concrete characterization of this effect in a quantum many-body system is still an unsolved problem. Here we present a Hamiltonian reconstruction scheme that allows for a precise quantification of hole-motion-induced frustration. We access non-local correlation functions through projective measurements of the many-body state, from which effective spin-Hamiltonians can be recovered after detaching the magnetic background from dominant charge fluctuations. The scheme is applied to systems of mixed dimensionality, where holes are restricted to move in one dimension, but SU(2) superexchange is two-dimensional. We demonstrate that hole motion drives the spin background into a highly frustrated regime, which can quantitatively be described by an effective $J_1-J_2-$type spin model. We exemplify the applicability of the reconstruction scheme to ultracold atom experiments by recovering effective spin-Hamiltonians of experimentally obtained 1D Fermi-Hubbard snapshots. Our method can be generalized to fully 2D systems, enabling promising microscopic perspectives on the doped Hubbard model.