论文标题

通过itô-nisio加强了Orlicz-Pettis定理

A strengthened Orlicz-Pettis theorem via Itô-Nisio

论文作者

Sussman, Ethan

论文摘要

在本说明中,我们从itô-nisio定理中推断出orlicz-pettis定理的加强。该论点表明,鉴于Banach空间中的任何序列,这是不可总结的(或更一般无条件的总结),我们可以构建一个(粗粒)的子层,并具有该属性 - 在某些适当的“几乎所有”概念下,几乎所有其他的子层都无法忽略。此外,霍夫曼 - 乔根森(Hoffmann-Jorgensen)对itô-nisio定理的加强使我们能够用“ $τ$ - 非常易于总结”代替“弱总结”,以使适当的拓扑结构$τ$比弱拓扑较弱。给出了对可允许$τ$的ITô-nisio定理的处理。

In this note we deduce a strengthening of the Orlicz-Pettis theorem from the Itô-Nisio theorem. The argument shows that given any series in a Banach space which isn't summable (or more generally unconditionally summable), we can construct a (coarse-grained) subseries with the property that -- under some appropriate notion of "almost all" -- almost all further subseries thereof fail to be weakly summable. Moreover, a strengthening of the Itô-Nisio theorem by Hoffmann-Jorgensen allows us to replace `weakly summable' with `$τ$-weakly summable' for appropriate topologies $τ$ weaker than the weak topology. A treatment of the Itô-Nisio theorem for admissible $τ$ is given.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源