论文标题

截短的Beurling操作员的加权Sobolev估计值

Weighted Sobolev estimates of the truncated Beurling operator

论文作者

Pan, Yifei, Zhang, Yuan

论文摘要

给定一个有界的平面域$ d $,带有$ W^{k+1,\ infty} $边界,$ k \ in \ mathbb z^+$,在a_p,1 <p <\ infty $中,我们表明,相应的截断的beurling变换是一个有界的操作员,是发送$ w^^^{k,p^,p^n ofterling trunculling thrunculling变换。还获得了其他Cauchy型积分的加权Sobolev估计值。

Given a bounded planar domain $D$ with $W^{k+1, \infty}$ boundary, $ k\in \mathbb Z^+$, and a weight $μ\in A_p, 1<p<\infty$, we show that the corresponding truncated Beurling transform is a bounded operator sending $W^{k, p}(D, μ)$ into itself. Weighted Sobolev estimates for other Cauchy-type integrals are also obtained.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源