论文标题
$ \ bar \ partial $在hartogs三角上的最佳sobolev规律性
Optimal Sobolev regularity of $\bar\partial$ on the Hartogs triangle
论文作者
论文摘要
在本文中,我们表明,对于\ mathbb z^+,p> 4 $,对于$ \ bar \ bar \ partial $问题的每个$ k \,p> 4 $,在Hartogs Triangle上具有相同的$ W^{k,p} $正常的数据。根据Kerzman类型的示例,该操作员为解决方案提供了最佳的Sobolev规则性。
In this paper, we show that for each $k\in \mathbb Z^+, p>4$, there exists a solution operator $\mathcal T_k$ to the $\bar\partial$ problem on the Hartogs triangle that maintains the same $W^{k, p}$ regularity as that of the data. According to a Kerzman-type example, this operator provides solutions with the optimal Sobolev regularity.