论文标题
四元组,蒙格 - 安帕尔结构和$ k $ -surfaces
Quaternions, Monge-Ampère structures and $k$-surfaces
论文作者
论文摘要
在[15]中,Labourie开发了一种浸入的处方外弯曲表面的理论,此后发现在双曲几何,一般相对论,Teichmüller理论等中发现了广泛的应用。在本章中,我们介绍了这些思想的四元素重新构造。这产生了主要结果的更简单的证据,同时指出了作者在[25]中研究的较高维度的概括。
In [15] Labourie develops a theory of immersed surfaces of prescribed extrinsic curvature which has since found widespread applications in hyperbolic geometry, general relativity, Teichmüller theory, and so on. In this chapter, we present a quaternionic reformulation of these ideas. This yields simpler proofs of the main results whilst pointing towards the higher-dimensional generalisation studied by the author in [25].