论文标题
CLAD:基于对比度学习的背景偏见的方法
CLAD: A Contrastive Learning based Approach for Background Debiasing
论文作者
论文摘要
卷积神经网络(CNN)在多个视力任务中已达到超人的表现,尤其是图像分类。但是,与人类不同,美国有线电视新闻网(CNNS)利用虚假特征(例如背景信息)做出决定。这种趋势在鲁棒性或较弱的概括性能方面会产生不同的问题。通过我们的工作,我们引入了一种基于对比的学习方法(CLAD),以减轻CNN中的背景偏见。外壳鼓励语义专注于对象前景,并从无情的背景中惩罚学习特征。我们的方法还引入了采样负样本的有效方法。我们在背景挑战数据集上实现了最新的结果,以4.1 \%的利润率优于先前的基准。我们的论文展示了外壳如何作为伪造特征(例如背景和纹理(补充材料))的概念证明。
Convolutional neural networks (CNNs) have achieved superhuman performance in multiple vision tasks, especially image classification. However, unlike humans, CNNs leverage spurious features, such as background information to make decisions. This tendency creates different problems in terms of robustness or weak generalization performance. Through our work, we introduce a contrastive learning-based approach (CLAD) to mitigate the background bias in CNNs. CLAD encourages semantic focus on object foregrounds and penalizes learning features from irrelavant backgrounds. Our method also introduces an efficient way of sampling negative samples. We achieve state-of-the-art results on the Background Challenge dataset, outperforming the previous benchmark with a margin of 4.1\%. Our paper shows how CLAD serves as a proof of concept for debiasing of spurious features, such as background and texture (in supplementary material).