论文标题
在单数空间上某些$ p $形式的frobenius集成性
Frobenius integrability of certain $p$-forms on singular spaces
论文作者
论文摘要
Demailly证明,在平滑的紧凑型Kähler歧管上,由holomormormormormormormormormormormormormormormorphic $ p $形式定义,并在反质量填充线中的值始终是可集成的。我们将他的结果推广到以KLT的奇异性压缩Kähler空间。
Demailly proved that on a smooth compact Kähler manifold the distribution defined by a holomorphic $p$-form with values in an anti-pseudoeffective line bundle is always integrable. We generalise his result to compact Kähler spaces with klt singularities.