论文标题

完全晶格线性算法

Fully Lattice-Linear Algorithms

论文作者

Gupta, Arya Tanmay, Kulkarni, Sandeep S

论文摘要

引入了晶格线性,以使用诱导全球状态的晶格的谓词建模问题(Garg,Spaa 2020)。 \ textIt {谓词}的关键属性是代表此类问题的关键属性,它在状态空间中诱导\ textit {一}晶格。从这种谓词出现的算法也可以确保执行是正确的,即使节点异步执行。但是,许多有趣的问题没有表现出晶格线性。最终引入了晶格线性算法(Gupta和Kulkarni,SSS 2021)时,这个问题有所缓解。他们诱导\ textit {single {single}或\ textIt {procedit}晶格\ textit {状态空间的子集},即使问题无法通过全局状态形成晶格的谓词来定义问题。 本文着重于分析和区分晶格线性问题和算法。我们介绍\ textIt {完全晶格线性算法}。这些算法将\ textIt {整个}划分到\ ​​textIt {一个或多个晶格}中,因此,即使节点异步执行执行,也要确保执行保持正确。为了进行演示,我们提出了最小的主导集(MDS),图形着色(GC),最小顶点盖(MVC)和最大独立集(MIS)问题的晶格线性自动稳定算法。 MDS,MVC和MIS的算法以$ N $移动和GC的算法收敛于$ n+200万美元的移动。这些算法保留了这段时间的复杂性,同时允许节点异步执行。他们对文献中存在的现有算法进行了改进。 我们的工作还表明,为了允许异步,可以允许使用更轻松的数据结构(在本文中称为$ \ prec $ - lattice,在这里可能无法定义一对全球状态的相遇),而不是GARG假设的分布式晶格。

Lattice-linearity was introduced as a way to model problems using predicates that induce a lattice among the global states (Garg, SPAA 2020). A key property of \textit{the predicate} representing such problems is that it induces \textit{one} lattice in the state space. An algorithm that emerges from such a predicate guarantees the execution to be correct even if nodes execute asynchronously. However, many interesting problems do not exhibit lattice-linearity. This issue was somewhat alleviated with the introduction of eventually lattice-linear algorithms (Gupta and Kulkarni, SSS 2021). They induce \textit{single} or \textit{multiple} lattices in \textit{a subset of the state space} even when the problem cannot be defined by a predicate under which the global states form a lattice. This paper focuses on analyzing and differentiating between lattice-linear problems and algorithms. We introduce \textit{fully lattice-linear algorithms}. These algorithms partition the \textit{entire} reachable state space into \textit{one or more lattices}, and as a result, ensure that the execution remains correct even if nodes execute asynchronously. For demonstration, we present lattice-linear self-stabilizing algorithms for minimal dominating set (MDS), graph colouring (GC), minimal vertex cover (MVC) and maximal independent set (MIS) problems. The algorithms for MDS, MVC and MIS converge in $n$ moves and the algorithm for GC converges in $n+2m$ moves. These algorithms preserve this time complexity while allowing the nodes to execute asynchronously. They present an improvement to the existing algorithms present in the literature. Our work also demonstrates that to allow asynchrony, a more relaxed data structure can be allowed (called $\prec$-lattice in this paper, where the meet of a pair of global states may not be defined), rather than a distributive lattice as assumed by Garg.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源