论文标题
Viehweg的惠特尼式戈尔德尼斯坦有理性象y的双曲线
Viehweg hyperbolicity for Whitney equisingular families with Gorenstein rational singularities
论文作者
论文摘要
我们证明了Viehweg对惠特尼的双波利度猜想的类似物,用于具有Gorenstein合理性奇异性的投射品种的野生型家族,其几何通用纤维具有良好的最小模型。也就是说,对于具有最大变化的家庭,基本空间是对数一般类型的。主要的新成分是将交点复合物用作霍奇模块,用于Viehweg-Zuo和Popa-Schnell的对数Higgs Sheaves的构建。这种结构表明,通用类型的变种的模量空间是一个方程分层,每个层都是双曲线,我们的结果是朝这个方向迈出的第一步。
We prove the analogue of Viehweg's hyperbolicity conjecture for Whitney equisingular families of projective varieties with Gorenstein rational singularities whose geometric generic fiber has a good minimal model. Namely, for such families with maximal variation, the base spaces are of log general type. The main new ingredient is the use of intersection complexes as Hodge modules in the construction of logarithmic Higgs sheaves by Viehweg-Zuo and Popa-Schnell. This construction suggests an equisingular stratification of the moduli space of varieties of general type, with each stratum being hyperbolic, and our result is a first step in this direction.