论文标题

快速:通过反馈意识自我训练提高文本生成的可控性

FAST: Improving Controllability for Text Generation with Feedback Aware Self-Training

论文作者

Chai, Junyi, Pryzant, Reid, Dong, Victor Ye, Golobokov, Konstantin, Zhu, Chenguang, Liu, Yi

论文摘要

可控的文本生成系统通常利用控制代码来指导输出的各种属性,例如样式和长度。受到NLP因果推断的最新研究的启发,本文揭示了这些基于控制代码的条件文本生成算法中先前被忽略的缺陷。培训数据中的虚假相关性可能导致模型错误地依赖于属性选择的控制代码以外的输入的一部分,从而严重破坏了下游的生成质量和可控性。我们通过一系列案例研究证明了这个问题的严重性,然后提出了两种简单的技术,以减少训练集中的这些相关性。第一种技术是基于根据示例对每个语言属性(IPS)的倾向重采样数据的。第二个会产生每个示例的多个反事实版本,然后使用其他反馈机制去除嘈杂的示例(反馈意识到自我训练,快速)。我们评估了3个任务 - 新闻标题,元评论和搜索广告的生成 - 并证明与最先进的可控文本生成方法相比,快速可以显着提高生成的输出的可控性和语言质量。

Controllable text generation systems often leverage control codes to direct various properties of the output like style and length. Inspired by recent work on causal inference for NLP, this paper reveals a previously overlooked flaw in these control code-based conditional text generation algorithms. Spurious correlations in the training data can lead models to incorrectly rely on parts of the input other than the control code for attribute selection, significantly undermining downstream generation quality and controllability. We demonstrate the severity of this issue with a series of case studies and then propose two simple techniques to reduce these correlations in training sets. The first technique is based on resampling the data according to an example's propensity towards each linguistic attribute (IPS). The second produces multiple counterfactual versions of each example and then uses an additional feedback mechanism to remove noisy examples (feedback aware self-training, FAST). We evaluate on 3 tasks -- news headline, meta review, and search ads generation -- and demonstrate that FAST can significantly improve the controllability and language quality of generated outputs when compared to state-of-the-art controllable text generation approaches.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源