论文标题

不是另一个否定基准:Nan-nli测试套件用于子颈部否定

Not another Negation Benchmark: The NaN-NLI Test Suite for Sub-clausal Negation

论文作者

Truong, Thinh Hung, Otmakhova, Yulia, Baldwin, Timothy, Cohn, Trevor, Lau, Jey Han, Verspoor, Karin

论文摘要

当前语言模型捕获的否定程度很差,尽管该问题的程度尚未广泛理解。我们引入了一种自然语言推断(NLI)测试套件,以启用NLP方法的功能,以理解亚司法否定。该测试套件包含前提 - 假设对,其中前提包含亚司法否定,并通过对前提进行最小化修改以反映不同的解释来构建假设。除了采用标准NLI标签外,我们的测试套件是在严格的语言框架下系统地构建的。它包括以语言理论为基础的否定类型和结构的注释,以及用于构建假设的操作。这有助于对模型性能进行细粒度分析。我们使用预训练的语言模型进行实验,以证明我们的测试套件比专注于否定的现有基准更具挑战性,并显示我们的注释如何在否定和量化方面对当前NLI功能有更深入的了解。

Negation is poorly captured by current language models, although the extent of this problem is not widely understood. We introduce a natural language inference (NLI) test suite to enable probing the capabilities of NLP methods, with the aim of understanding sub-clausal negation. The test suite contains premise--hypothesis pairs where the premise contains sub-clausal negation and the hypothesis is constructed by making minimal modifications to the premise in order to reflect different possible interpretations. Aside from adopting standard NLI labels, our test suite is systematically constructed under a rigorous linguistic framework. It includes annotation of negation types and constructions grounded in linguistic theory, as well as the operations used to construct hypotheses. This facilitates fine-grained analysis of model performance. We conduct experiments using pre-trained language models to demonstrate that our test suite is more challenging than existing benchmarks focused on negation, and show how our annotation supports a deeper understanding of the current NLI capabilities in terms of negation and quantification.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源