论文标题

部分可观测时空混沌系统的无模型预测

High Resolution Spatio-Temporal Model for Room-Level Airborne Pandemic Spread

论文作者

Lazebnik, Teddy, Alexi, Ariel

论文摘要

空中大流行病已在全球造成数百万次死亡,大规模的经济损失以及人类历史上的灾难性社会学转变。研究人员已经开发了多种数学模型和计算框架,以调查和预测大流行在各个层次和规模上的扩散,例如国家,城市,大型社交事件,甚至建筑物。但是,在最小的规模(单室)中,空中流血动力学的建模尝试大多被忽略了。随着全球城市化过程导致的室内时间的增加,共享房间中发生了更多的感染。在这项研究中,提出了一种具有空气流动动力学的高分辨率时空飞行学模型,以评估空气传播的大流行扩散。该模型是使用使用光检测和范围(LIDAR)设备获得的高分辨率3D数据来实施的,并基于气流的计算流体动力学(CFD)模型计算模型,以及用于流行病学动力学的易感性暴露感染(SEI)模型。在四种房间中评估了大流行的差异,即使在短时间暴露时间内也显示出显着差异。我们表明,房间中房间的拓扑结构和个体分布定义了空气通风减少整个呼吸区感染中大流行的能力。

Airborne pandemics have caused millions of deaths worldwide, large-scale economic losses, and catastrophic sociological shifts in human history. Researchers have developed multiple mathematical models and computational frameworks to investigate and predict the pandemic spread on various levels and scales such as countries, cities, large social events, and even buildings. However, modeling attempts of airborne pandemic dynamics on the smallest scale, a single room, have been mostly neglected. As time indoors increases due to global urbanization processes, more infections occur in shared rooms. In this study, a high-resolution spatio-temporal epidemiological model with airflow dynamics to evaluate airborne pandemic spread is proposed. The model is implemented using high-resolution 3D data obtained using a light detection and ranging (LiDAR) device and computing the model based on the Computational Fluid Dynamics (CFD) model for the airflow and the Susceptible-Exposed-Infected (SEI) model for the epidemiological dynamics. The pandemic spread is evaluated in four types of rooms, showing significant differences even for a short exposure duration. We show that the room's topology and individual distribution in the room define the ability of air ventilation to reduce pandemic spread throughout breathing zone infection.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源