论文标题

建模内气球中的太阳能轨道尘埃检测率作为泊松过程

Modelling Solar Orbiter Dust Detection Rates in Inner Heliosphere as a Poisson Process

论文作者

Kočiščák, Samuel, Kvammen, Andreas, Mann, Ingrid, Sørbye, Sigrunn Holbek, Theodorsen, Audun, Zaslavsky, Arnaud

论文摘要

太阳轨道提供了内部气球的灰尘检测能力,但是从收集的数据中估算检测到的灰尘的物理特性远非直接。首先,考虑了泊松过程的尘埃收集物理模型。其次,表明双曲线轨道上的灰尘是通过太阳能轨道射线的无线电和等离子体波(SOLO/RPW)的大多数粉尘探测负责的。第三,粉尘计数的模型适用于独奏/RPW数据,粉尘的参数是推断的,即:径向速度,双曲线酿酒素优势和太阳辐射压力与重力比以及这些不确定性。因此,非参数模型拟合用于获得入站检测率和出站检测率和尘埃径向速度之间的差异。层次贝叶斯模型被制定并应用于可用的独奏/RPW数据。该模型使用集成的嵌套拉普拉斯近似方法的方法,估计灰尘的参数及其不确定性。独奏/RPW尘埃观测可以建模为贝叶斯框架中的泊松过程,直到这个日期的观测与具有附加背景成分的双曲线灰尘模型一致。分析表明,双曲线成分的径向速度约为$(63 \ pm 7)\ mathrm {km/s} $,双曲线灰尘的优势约为$(78 \ pm 4)\%$。结果与源自$ 0.02 \ mathrm {au} $和$ 0.1 \ mathrm {au} $之间的双曲线母体一致,并显示出大量减速,这意味着有效的太阳辐射压力与重力比$ \ gtrsim 0.5 $ 0.5 $。 $ 1 \ mathrm {au} $的双曲分量的通量被发现为$(1.1 \ pm 0.2)\ times 10^{ - 4} \ Mathrm {m^{ - 2} s^{ - 1}}} $,$ 1 \ mathrm {au} $ 1.5 is(us 1.5) 10^{ - 5} \ mathrm {m^{ - 2} s^{ - 1}} $。

Solar Orbiter provides dust detection capability in inner heliosphere, but estimating physical properties of detected dust from the collected data is far from straightforward. First, a physical model for dust collection considering a Poisson process is formulated. Second, it is shown that dust on hyperbolic orbits is responsible for the majority of dust detections with Solar Orbiter's Radio and Plasma Waves (SolO/RPW). Third, the model for dust counts is fitted to SolO/RPW data and parameters of the dust are inferred, namely: radial velocity, hyperbolic meteoroids predominance, and solar radiation pressure to gravity ratio as well as uncertainties of these. Non-parametric model fitting is used to get the difference between inbound and outbound detection rate and dust radial velocity is thus estimated. A hierarchical Bayesian model is formulated and applied to available SolO/RPW data. The model uses the methodology of Integrated Nested Laplace Approximation, estimating parameters of dust and their uncertainties. SolO/RPW dust observations can be modelled as a Poisson process in a Bayesian framework and observations up to this date are consistent with the hyperbolic dust model with an additional background component. Analysis suggests a radial velocity of the hyperbolic component around $(63 \pm 7) \mathrm{km/s}$ with the predominance of hyperbolic dust about $(78 \pm 4) \%$. The results are consistent with hyperbolic meteoroids originating between $0.02 \mathrm{AU}$ and $0.1 \mathrm{AU}$ and showing substantial deceleration, which implies effective solar radiation pressure to gravity ratio $\gtrsim 0.5$. The flux of hyperbolic component at $1 \mathrm{AU}$ is found to be $(1.1 \pm 0.2) \times 10^{-4} \mathrm{m^{-2}s^{-1}}$ and the flux of background component at $1 \mathrm{AU}$ is found to be $(5.4 \pm 1.5) \times 10^{-5} \mathrm{m^{-2}s^{-1}}$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源