论文标题

对自我监督学习的美白损失的调查

An Investigation into Whitening Loss for Self-supervised Learning

论文作者

Weng, Xi, Huang, Lei, Zhao, Lei, Anwer, Rao Muhammad, Khan, Salman, Khan, Fahad Shahbaz

论文摘要

自我监督学习(SSL)的理想目标是避免特征崩溃。在调节不同视图的嵌入在变白的条件下,美白损失通过最大程度地减少正对嵌入正面的距离来确保避免崩溃。在本文中,我们提出了一个具有信息指标的框架来分析美白损失,该框架提供了一个线索,以揭开几种有趣现象以及连接到其他SSL方法的旋转点。我们透露,基于批处理(BW)的方法不会对嵌入施加美白约束,但它们只要求嵌入为全级。这种全等级的约束也足以避免尺寸崩溃。基于我们的分析,我们提出了使用随机组分区(CW-RGP)的通道美白,该渠道利用了基于BW的方法在防止崩溃方面的优势,并避免了其缺点,需要大批量尺寸。 ImageNet分类和可可对象检测的实验结果表明,所提出的CW-RGP具有学习良好表示的有希望的潜力。该代码可在https://github.com/winci-ai/cw-rgp上找到。

A desirable objective in self-supervised learning (SSL) is to avoid feature collapse. Whitening loss guarantees collapse avoidance by minimizing the distance between embeddings of positive pairs under the conditioning that the embeddings from different views are whitened. In this paper, we propose a framework with an informative indicator to analyze whitening loss, which provides a clue to demystify several interesting phenomena as well as a pivoting point connecting to other SSL methods. We reveal that batch whitening (BW) based methods do not impose whitening constraints on the embedding, but they only require the embedding to be full-rank. This full-rank constraint is also sufficient to avoid dimensional collapse. Based on our analysis, we propose channel whitening with random group partition (CW-RGP), which exploits the advantages of BW-based methods in preventing collapse and avoids their disadvantages requiring large batch size. Experimental results on ImageNet classification and COCO object detection reveal that the proposed CW-RGP possesses a promising potential for learning good representations. The code is available at https://github.com/winci-ai/CW-RGP.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源