论文标题
在相互作用的跨度半个系统中的超导性
Superconductivity in a system of interacting spinful semions
论文作者
论文摘要
预计遵守某些分数统计的非相互作用颗粒表现出超导性。我们通过数值研究在零温度下的偏离分子长距离顺序的存在,在晶格上的刺激性半分子的吸引人相互作用的系统中讨论了这个问题。为此,我们构建了一个Hubbard模型,其中两个具有相反旋转的半个性几乎可以重合,同时与分数编织统计数据保持一致。在强耦合极限中可以看到明显的非对角线远距离顺序,这与预期一对半月遵守BOSE统计的期望相一致。我们发现,半个系统的行为与广泛的$ u $范围的同样有吸引力的Hubbard $ U $相互作用的Fermions系统相似,这表明Semions还会在BCS进行BEC Crossover作为$ U $的函数。
Non-interacting particles obeying certain fractional statistics have been predicted to exhibit superconductivity. We discuss the issue in an attractively interacting system of spinful semions on a lattice by numerically investigating the presence of off-diagonal long-range order at zero temperature. For this purpose, we construct a Hubbard model wherein two semions with opposite spin can virtually coincide while maintaining consistency with the fractional braiding statistics. Clear off-diagonal long range order is seen in the strong coupling limit, consistent with the expectation that a pair of semions obeys Bose statistics. We find that the semion system behaves similarly to a system of fermions with the same attractive Hubbard $U$ interaction for a wide range of $U$, suggesting that semions also undergo a BCS to BEC crossover as a function of $U$.