论文标题

从一致性表示的费米子拓扑命令的分类

Classification of Fermionic Topological Orders from Congruence Representations

论文作者

Cho, Gil Young, Kim, Hee-cheol, Seo, Donghae, You, Minyoung

论文摘要

储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。

The fusion rules and braiding statistics of anyons in $(2+1)$D fermionic topological orders are characterized by the modular data of a super-modular category. On the other hand, the modular data of a super-modular category form a congruence representation of the $Γ_θ$ subgroup of the modular group $\mathrm{SL}_2(\mathbb{Z})$. We provide a method to classify the modular data of super-modular categories by first obtaining the congruence representations of $Γ_θ$ and then building candidate modular data out of those representations. We carry out this classification up to rank $10$. We obtain both unitary and non-unitary modular data, including all previously known unitary modular data, and also discover new classes of modular data of rank $10$. We also determine the central charges of all these modular data, without explicitly computing their modular extensions.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源