论文标题
标量或矢量调量 - 高斯河网理论中的无毛黑洞定理
No-Go Theorems for Hairy Black Holes in Scalar- or Vector-Tensor-Gauss-Bonnet Theory
论文作者
论文摘要
在本文中,我们展示了一个无关的定理,用于静态球形对称的黑洞,在爱因斯坦 - $λ$ - $ - vector-vector-tensor-tensor-gauss-bonnet理论中,一个复杂的矢量场与高斯 - 骨不变的无限层伴侣。为此,我们在事件范围内扩展了向量场的度量函数和径向功能,并将扩展代替为运动方程。要求在每个顺序上满足运动方程式,我们表明复杂的向量场在事件范围内消失了。此外,当事件范围退化时,还暗示复杂的矢量场在地平线上和外部消失。
In this paper, we show a no-go theorem for static spherically symmetric black holes with vector hair in Einstein-$Λ$-Vector-Tensor-Gauss-Bonnet theory where a complex vector field non-minimally couples with Gauss-Bonnet invariant. For this purpose, we expand metric functions and radial functions of a vector field around the event horizon, and substitute the expansions into equations of motion. Demanding that the equations of motion are satisfied in each order, we show that the complex vector field vanishes on the event horizon. Moreover, when the event horizon is degenerated, it is also implied that the complex vector field vanishes on and outside the horizon.