论文标题

部分可观测时空混沌系统的无模型预测

Stimulative Training of Residual Networks: A Social Psychology Perspective of Loafing

论文作者

Ye, Peng, Tang, Shengji, Li, Baopu, Chen, Tao, Ouyang, Wanli

论文摘要

储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。

Residual networks have shown great success and become indispensable in today's deep models. In this work, we aim to re-investigate the training process of residual networks from a novel social psychology perspective of loafing, and further propose a new training strategy to strengthen the performance of residual networks. As residual networks can be viewed as ensembles of relatively shallow networks (i.e., \textit{unraveled view}) in prior works, we also start from such view and consider that the final performance of a residual network is co-determined by a group of sub-networks. Inspired by the social loafing problem of social psychology, we find that residual networks invariably suffer from similar problem, where sub-networks in a residual network are prone to exert less effort when working as part of the group compared to working alone. We define this previously overlooked problem as \textit{network loafing}. As social loafing will ultimately cause the low individual productivity and the reduced overall performance, network loafing will also hinder the performance of a given residual network and its sub-networks. Referring to the solutions of social psychology, we propose \textit{stimulative training}, which randomly samples a residual sub-network and calculates the KL-divergence loss between the sampled sub-network and the given residual network, to act as extra supervision for sub-networks and make the overall goal consistent. Comprehensive empirical results and theoretical analyses verify that stimulative training can well handle the loafing problem, and improve the performance of a residual network by improving the performance of its sub-networks. The code is available at https://github.com/Sunshine-Ye/NIPS22-ST .

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源