论文标题
对话性表示对话问题的学习,回答知识图
Contrastive Representation Learning for Conversational Question Answering over Knowledge Graphs
论文作者
论文摘要
本文介绍了对话问题回答(CONSQA)的任务(kgs)。大多数现有的ConvQA方法都依赖于全面监督信号,严格假设金逻辑形式的查询形式可以从KG中提取答案。但是,在实际情况下,创建这样的金色逻辑形式对于每个潜在问题都是不可行的。因此,在缺少黄金逻辑形式的情况下,现有的基于信息检索的方法通过启发式或强化学习使用弱监督,将Convqa作为KG路径排名问题。尽管缺少黄金逻辑形式,但可以合并大量的对话环境,例如整个对话历史记录和域信息,以有效地达到正确的kg路径。这项工作提出了一种基于对比表示的基于学习的方法,以有效地对KG路径进行排名。我们的方法解决了两个关键挑战。首先,它允许基于薄弱的基于监督的学习,从而省略了黄金注释的必要性。其次,它结合了对话环境(整个对话历史记录和域信息),以共同学习其同质表示,并使用KG路径,以改善对比度表示有效路径排名。我们在Convqa的标准数据集上评估了我们的方法,在该数据集中,它在所有领域和总体上都大大优于现有基准。具体而言,在某些情况下,与最先进的绩效相比,在某些情况下,平均互惠等级(MRR)和5个排名指标分别提高了绝对10和18分。
This paper addresses the task of conversational question answering (ConvQA) over knowledge graphs (KGs). The majority of existing ConvQA methods rely on full supervision signals with a strict assumption of the availability of gold logical forms of queries to extract answers from the KG. However, creating such a gold logical form is not viable for each potential question in a real-world scenario. Hence, in the case of missing gold logical forms, the existing information retrieval-based approaches use weak supervision via heuristics or reinforcement learning, formulating ConvQA as a KG path ranking problem. Despite missing gold logical forms, an abundance of conversational contexts, such as entire dialog history with fluent responses and domain information, can be incorporated to effectively reach the correct KG path. This work proposes a contrastive representation learning-based approach to rank KG paths effectively. Our approach solves two key challenges. Firstly, it allows weak supervision-based learning that omits the necessity of gold annotations. Second, it incorporates the conversational context (entire dialog history and domain information) to jointly learn its homogeneous representation with KG paths to improve contrastive representations for effective path ranking. We evaluate our approach on standard datasets for ConvQA, on which it significantly outperforms existing baselines on all domains and overall. Specifically, in some cases, the Mean Reciprocal Rank (MRR) and Hit@5 ranking metrics improve by absolute 10 and 18 points, respectively, compared to the state-of-the-art performance.