论文标题
通过J积分和应变能量最小化对粘合剂背层的多物质拓扑优化
Multi-material topology optimization of adhesive backing layers via J-integral and strain energy minimizations
论文作者
论文摘要
强粘合剂依赖于降低的应力浓度,通常是通过特定的几何形状或材料组成获得的。在自然界和工程原型中的许多例子中,粘合性能依赖于在特定位置放置的结构刚度。基于参数优化,已经制定了一些设计原则,而一般的设计工具仍然缺失。我们建议使用拓扑优化来实现多物质粘合剂背部的最佳刚度分布,从而减少指定位置的应力浓度。该方法涉及最小化J-积分和应变能的线性组合。虽然J-Integral最小化旨在降低应力集中度,但我们观察到这两个目标的组合最终提供了最佳结果。我们分析了平面应变条件下的三个病例,即(i)双刃裂纹和(ii)张力中的中心裂纹和(iii)剪切下的边缘裂纹。每种情况都证明了(i)和(ii)提供相似结果的不同最佳拓扑。最佳拓扑结构在远离裂纹尖端的区域中分配了刚度,但是柔软的材料在更硬的区域中的分配可能是无处不在的。为了测试我们的解决方案,我们绘制了整个界面上的接触应力分布。在所有观察到的情况下,我们消除了裂纹尖端的应力奇异性。远离裂纹尖端的位置可能会出现应力浓度,但最终结果与裂纹大小无关。我们的方法最终提供了已知裂纹位置的最佳,耐受性的粘合剂。
Strong adhesives rely on reduced stress concentrations, often obtained via specific geometry or composition of materials. In many examples in nature and engineering prototypes, the adhesive performance relies on structural rigidity being placed in specific locations. A few design principles have been formulated, based on parametric optimization, while a general design tool is still missing. We propose to use topology optimization to achieve optimal stiffness distribution in a multi-material adhesive backing layer, reducing stress concentration at specified locations. The method involves the minimization of a linear combination of J-integral and strain energy. While the J-integral minimization is aimed at reducing stress concentration, we observe that the combination of these two objectives ultimately provides the best results. We analyze three cases in plane strain conditions, namely (i) double-edged crack and (ii) center crack in tension and (iii) edge crack under shear. Each case evidences a different optimal topology with (i) and (ii) providing similar results. The optimal topology allocates stiffness in regions that are far away from the crack tip, intuitively, but the allocation of softer materials over stiffer ones can be non-trivial. To test our solutions, we plot the contact stress distribution across the interface. In all observed cases, we eliminate the stress singularity at the crack tip. Stress concentrations might arise in locations far away from the crack tip, but the final results are independent of crack size. Our method ultimately provides optimal, flaw tolerant, adhesives where the crack location is known.