论文标题

具有局部抗魔法色编号2的S桥图的完整表征

Complete characterization of s-bridge graphs with local antimagic chromatic number 2

论文作者

Lau, Gee-Choon, Shiu, Wai-Chee, Zhang, Ruixue, Premalatha, K., Nalliah, M.

论文摘要

连接图的边缘标记$ g =(v,e)$,如果是二维$ f:e \ to \ to \ {1,\ ldots,| e | \} $,则是局部反象征,因此对于任何一对相邻的顶点$ x $ x $ and $ x $ and $ x $,$ f^+(x) \ sum f(e)$,$ e $在所有事件的边缘范围内到$ x $。 $ g $的本地抗原色数,用$χ_{la}(g)$表示,是所有本地抗原标签上$ g $的最小诱导顶点标签的最小数量。在本文中,我们表征了$ s $桥图,上面有局部抗魔法音2。

An edge labeling of a connected graph $G = (V, E)$ is said to be local antimagic if it is a bijection $f:E \to\{1,\ldots ,|E|\}$ such that for any pair of adjacent vertices $x$ and $y$, $f^+(x)\not= f^+(y)$, where the induced vertex label $f^+(x)= \sum f(e)$, with $e$ ranging over all the edges incident to $x$. The local antimagic chromatic number of $G$, denoted by $χ_{la}(G)$, is the minimum number of distinct induced vertex labels over all local antimagic labelings of $G$. In this paper, we characterize $s$-bridge graphs with local antimagic chromatic number 2.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源