论文标题

与多机器人场景重建的模式切换的异步协作自动化

Asynchronous Collaborative Autoscanning with Mode Switching for Multi-Robot Scene Reconstruction

论文作者

Guo, Junfu, Li, Changhao, Xia, Xi, Hu, Ruizhen, Liu, Ligang

论文摘要

在对未知室内环境进行在线重建进行自主扫描时,机器人必须有能力探索场景结构和高质量重建对象。我们的主要观察结果是,不同的任务要求机器人的专业扫描属性:快速移动速度和对全球探索的远景和缓慢移动的速度和狭窄的局部物体重建视觉,这被称为两种不同的扫描模式:Explorer和Reconstructor。当要求多个机器人协作以进行有效的探索和细粒度重建时,应仔细回答有关何时生成以及如何分配这些任务的问题。因此,我们提出了一种具有模式切换的新型异步协作自动启动方法,该方法通过相关的扫描模式生成两种扫描任务,即具有Explorer模式的勘探任务和重建器模式的重建任务,并通过重建器模式进行重建任务,并将其分配给机器人以高度的协作效率,以高度效率效率效率,并效率高度效率。通过求解修改后的多台词多重旅行推销员问题(MDMTSP)来优化任务分配。此外,为了进一步提高协作并提高效率,我们提出了一个任务流模型,当任何机器人完成所有任务时,无需等待所有其他机器人即可完成以前的迭代中分配的任务时,该模型会立即启动任务生成和分配过程。已经进行了广泛的实验,以显示我们方法的每个关键组成部分的重要性以及优于先前方法在扫描效率和重建质量方面的优势。

When conducting autonomous scanning for the online reconstruction of unknown indoor environments, robots have to be competent at exploring scene structure and reconstructing objects with high quality. Our key observation is that different tasks demand specialized scanning properties of robots: rapid moving speed and far vision for global exploration and slow moving speed and narrow vision for local object reconstruction, which are referred as two different scanning modes: explorer and reconstructor, respectively. When requiring multiple robots to collaborate for efficient exploration and fine-grained reconstruction, the questions on when to generate and how to assign those tasks should be carefully answered. Therefore, we propose a novel asynchronous collaborative autoscanning method with mode switching, which generates two kinds of scanning tasks with associated scanning modes, i.e., exploration task with explorer mode and reconstruction task with reconstructor mode, and assign them to the robots to execute in an asynchronous collaborative manner to highly boost the scanning efficiency and reconstruction quality. The task assignment is optimized by solving a modified Multi-Depot Multiple Traveling Salesman Problem (MDMTSP). Moreover, to further enhance the collaboration and increase the efficiency, we propose a task-flow model that actives the task generation and assignment process immediately when any of the robots finish all its tasks with no need to wait for all other robots to complete the tasks assigned in the previous iteration. Extensive experiments have been conducted to show the importance of each key component of our method and the superiority over previous methods in scanning efficiency and reconstruction quality.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源