论文标题
光谱几何验证:重新排列点云检索指标定位
Spectral Geometric Verification: Re-Ranking Point Cloud Retrieval for Metric Localization
论文作者
论文摘要
在大规模指标的定位中,检索过程中的不正确结果将导致姿势估计值不正确或循环闭合。重新排列的方法建议考虑所有顶级检索候选者并重新排序,以增加最高候选人正确的可能性。但是,由于需要在查询和每个候选人之间进行资源密集的点云注册,因此在重新排列许多潜在候选者时,最新的重新排列方法效率低下。在这项工作中,我们提出了一种有效的光谱方法,用于几何验证(命名为SpectralGV),该方法不需要注册。我们演示了两个点云的对应关系兼容性图的最佳集群间评分表示衡量其空间一致性的强大健身得分。该分数考虑了结构相似的点云之间微妙的几何差异,因此可以用于识别通过全局相似性搜索检索到的潜在匹配中的正确候选者。 SpectralGV是确定性的,可靠的对应关系,并且可以平行计算所有潜在候选者。我们对5个大型数据集进行了广泛的实验,以证明SpectralGV优于其他最先进的重新排列方法,并表明它始终改善了对3个先进的度量定位体系结构的召回和构成估计,同时对运行时间具有可观的效果。开源实现和受过训练的模型可在以下网址找到:https://github.com/csiro-robotics/spectralgv。
In large-scale metric localization, an incorrect result during retrieval will lead to an incorrect pose estimate or loop closure. Re-ranking methods propose to take into account all the top retrieval candidates and re-order them to increase the likelihood of the top candidate being correct. However, state-of-the-art re-ranking methods are inefficient when re-ranking many potential candidates due to their need for resource intensive point cloud registration between the query and each candidate. In this work, we propose an efficient spectral method for geometric verification (named SpectralGV) that does not require registration. We demonstrate how the optimal inter-cluster score of the correspondence compatibility graph of two point clouds represents a robust fitness score measuring their spatial consistency. This score takes into account the subtle geometric differences between structurally similar point clouds and therefore can be used to identify the correct candidate among potential matches retrieved by global similarity search. SpectralGV is deterministic, robust to outlier correspondences, and can be computed in parallel for all potential candidates. We conduct extensive experiments on 5 large-scale datasets to demonstrate that SpectralGV outperforms other state-of-the-art re-ranking methods and show that it consistently improves the recall and pose estimation of 3 state-of-the-art metric localization architectures while having a negligible effect on their runtime. The open-source implementation and trained models are available at: https://github.com/csiro-robotics/SpectralGV.