论文标题

对视觉增强学习中数据增强的全面调查

A Comprehensive Survey of Data Augmentation in Visual Reinforcement Learning

论文作者

Ma, Guozheng, Wang, Zhen, Yuan, Zhecheng, Wang, Xueqian, Yuan, Bo, Tao, Dacheng

论文摘要

直接从高维视觉输入中做出决策的视觉增强学习(RL)在各个领域都具有巨大潜力。但是,由于样本效率低和较大的概括差距,在现实世界中部署视觉RL技术仍然具有挑战性。为了应对这些障碍,数据增强(DA)已成为视觉RL中广泛使用的技术,用于通过多样化培训数据来获取样品效率和可推广的策略。这项调查旨在对视觉RL中的DA技术进行及时,基本的审查,以表彰该领域蓬勃发展的发展。特别是,我们提出了一个统一的框架,用于分析视觉RL并了解DA在其中的作用。然后,我们介绍了视觉RL中现有的增强技术的原则分类法,并就如何在不同情况下更好地利用增强数据进行深入讨论。此外,我们报告了对视觉RL中基于DA的技术的系统经验评估,并通过强调未来研究的方向来得出结论。作为对视觉RL中DA的首次全面调查,这项工作有望为这一新兴领域提供宝贵的指导。

Visual reinforcement learning (RL), which makes decisions directly from high-dimensional visual inputs, has demonstrated significant potential in various domains. However, deploying visual RL techniques in the real world remains challenging due to their low sample efficiency and large generalization gaps. To tackle these obstacles, data augmentation (DA) has become a widely used technique in visual RL for acquiring sample-efficient and generalizable policies by diversifying the training data. This survey aims to provide a timely and essential review of DA techniques in visual RL in recognition of the thriving development in this field. In particular, we propose a unified framework for analyzing visual RL and understanding the role of DA in it. We then present a principled taxonomy of the existing augmentation techniques used in visual RL and conduct an in-depth discussion on how to better leverage augmented data in different scenarios. Moreover, we report a systematic empirical evaluation of DA-based techniques in visual RL and conclude by highlighting the directions for future research. As the first comprehensive survey of DA in visual RL, this work is expected to offer valuable guidance to this emerging field.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源