论文标题
对AB-Flux场下非相关特征值解决方案的拓扑作用,具有伪harmonic和mie型电势
Topological Effects on Non-Relativistic Eigenvalue Solutions Under AB-Flux Field with Pseudoharmonic- and Mie-type Potentials
论文作者
论文摘要
在本文中,我们研究了由Aharonov-bohm量子通量场限制的非相关粒子的量子动力学,其在点状的全局单极管产生的拓扑缺陷的背景下具有伪harmonic型电位。我们通过分析求解径向schrödinger方程,并确定量子系统的精确特征值解决方案。之后,我们考虑量子系统中的MIE型电位,并分析求解径向方程并获得特征值溶液。我们通过这些电势分析了拓扑缺陷和量子通量的影响,这些电势对非相关颗粒的能量特征值和波浪功能。实际上,与扁平空间结果相比,结果表明能量水平和波函数受拓扑缺陷的影响改变了结果。此外,量子通量场还移动了特征值溶液,并观察到了aharonov-bohm效应对结合态的类似物。最后,我们将这些特征值溶液用于一些已知的硅藻分子电位模型,并提出了能量特征值和波函数
In this paper, we investigate the quantum dynamics of a non-relativistic particle confined by the Aharonov-Bohm quantum flux field with pseudoharmonic-type potential in the background of topological defect produced by a point-like global monopole. We solve the radial Schrödinger equation analytically and determine the exact eigenvalue solution of the quantum system. Afterwards, we consider a Mie-type potential in the quantum system and solve the radial equation analytically and obtain the eigenvalue solution. We analyze the effects of the topological defect and the quantum flux with these potentials on the energy eigenvalue and wave function of the non-relativistic particles. In fact, it is shown that the energy levels and wave functions are influenced by the topological defect shifted the result compared to the flat space results. In addition, the quantum flux field also shifted the eigenvalue solutions and an analogue of the Aharonov-Bohm effect for bound-states is observed. Finally, we utilize these eigenvalue solutions to some known diatomic molecular potential models and presented the energy eigenvalue and wave function