论文标题

层压材料和内部光谱的同质化

Homogenisation of Laminated Metamaterials and the Inner Spectrum

论文作者

Waurick, Marcus

论文摘要

我们研究具有快速签名系数的差异方程的均质化问题。侧重于($ d $维)人行横道类型形状中的分段常数,标量系数的问题,我们将提供一个限制过程,以了解潜在的不良和非电压设置。根据系数及其逆的整体平均值,限制可以满足分层介质的通常均质化公式,或者完全退化,或者是第四阶的非本地差分差异操作员。为了标记自然的急剧变化,我们引入了电导率的“内部光谱”。我们表明,即使在所有严格的正时期内都包含$ 0 $,但极限内部光谱也可以是空的。此外,即使频谱在所有严格的正时期都统一地限制在有限的集合中,并且不包含$ 0 $,但极限内部频谱可能具有$ 0 $作为基本频谱点,并且以$ \ infty $的价格积累,甚至是整个$ \ mathbb {c} $。这与经典的情况形成了鲜明的对比,在这种情况下,可以根据前肿瘤前的系数假定的值来得出上和下限。顺便说一句,我们还为Sturm-Liouville类型的操作员开发了一个不确定权重的理论,减少有关相关Sturm--Liouville操作员的解决性的问题,以了解某些显式多项式的零,并显示出通用的真实的零件恒定系数的真实真实扰动,导致持续不可逆转的sturm-liououville villevillevillevillevillevillevillevillevillevillevillevillevillevillevillevillevillevillevillevillevillevillevillevilleville ville ville ville ville ville ville ville ville ville ville ville ville ville ville。

We study homogenisation problems for divergence form equations with rapidly sign-changing coefficients. With a focus on problems with piecewise constant, scalar coefficients in a ($d$-dimensional) crosswalk type shape, we will provide a limit procedure in order to understand potentially ill-posed and non-coercive settings. Depending on the integral mean of the coefficient and its inverse, the limits can either satisfy the usual homogenisation formula for stratified media, be entirely degenerate or be a non-local differential operator of 4th order. In order to mark the drastic change of nature, we introduce the `inner spectrum' for conductivities. We show that even though $0$ is contained in the inner spectrum for all strictly positive periods, the limit inner spectrum can be empty. Furthermore, even though the spectrum was confined in a bounded set uniformly for all strictly positive periods and not containing $0$, the limit inner spectrum might have $0$ as an essential spectral point and accumulate at $\infty$ or even be the whole of $\mathbb{C}$. This is in stark contrast to the classical situation, where it is possible to derive upper and lower bounds in terms of the values assumed by the coefficients in the pre-asymptotics. In passing, we also develop a theory for Sturm--Liouville type operators with indefinite weights, reduce the question on solvability of the associated Sturm--Liouville operator to understanding zeros of a certain explicit polynomial and show that generic real perturbations of piecewise constant coefficients lead to continuously invertible Sturm--Liouville expressions.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源