论文标题
具有不同感染性和免疫力减弱的随机流行模型
Stochastic epidemic models with varying infectivity and waning immunity
论文作者
论文摘要
我们研究了一个基于个体的随机流行模型,在这种流行病模型中,感染的个体在每种感染后再次易感。与经典隔室模型相反,在每次感染之后,感染性是自感染以来经过的时间的随机函数。同样,根据随机敏感性功能,回收的个体在一段时间后逐渐易感。我们通过证明大量的功能定律(FLLN)来研究模型的大种群渐近行为,并研究了极限的地方均衡性质。极限取决于易感性随机函数的定律,但仅取决于平均感染功能。通过构建I.I.D.的序列证明了FLLN。辅助过程并从混乱的传播理论中适应了方法。限制是对Kermack和McKendrick引入的PDE模型的概括,我们展示了如何作为我们FLLN限制的特殊情况获得该PDE模型。%对于特定的感染性和易感性随机功能和初始条件。对于流行的平衡,如果$ r_0 $低于(或等于)某个阈值,那么流行病并不会永远持续下去,最终从人口中消失,而如果$ r_0 $大于此阈值,那么流行病就不会消失并且存在一个地方均衡。事实证明,该阈值的值取决于感染后很长一段时间的易感性的谐波平均值,这一事实以前尚不清楚。
We study an individual-based stochastic epidemic model in which infected individuals become susceptible again following each infection. In contrast to classical compartment models, after each infection, the infectivity is a random function of the time elapsed since one's infection. Similarly, recovered individuals become gradually susceptible after some time according to a random susceptibility function. We study the large population asymptotic behaviour of the model, by proving a functional law of large numbers (FLLN) and investigating the endemic equilibria properties of the limit. The limit depends on the law of the susceptibility random functions but only on the mean infectivity functions. The FLLN is proved by constructing a sequence of i.i.d. auxiliary processes and adapting the approach from the theory of propagation of chaos. The limit is a generalisation of a PDE model introduced by Kermack and McKendrick, and we show how this PDE model can be obtained as a special case of our FLLN limit.% for a particular set of infectivity and susceptibility random functions and initial conditions. For the endemic equilibria, if $ R_0 $ is lower than (or equal to) some threshold, the epidemic does not last forever and eventually disappears from the population, while if $ R_0 $ is larger than this threshold, the epidemic will not disappear and there exists an endemic equilibrium. The value of this threshold turns out to depend on the harmonic mean of the susceptibility a long time after an infection, a fact which was not previously known.