论文标题

低功耗多模式纤维投影仪克服浅神经网络分类器

Low-power multi-mode fiber projector overcomes shallow neural networks classifiers

论文作者

Ancora, Daniele, Negri, Matteo, Gianfrate, Antonio, Trypogeorgos, Dimitris, Dominici, Lorenzo, Sanvitto, Daniele, Ricci-Tersenghi, Federico, Leuzzi, Luca

论文摘要

在无序光子学领域中,光学不透明的材料用于光操作和成像是主要目的。在各种复杂的设备中,多模式光纤以具有成本效益且易于处理的工具脱颖而出,使它们在多个任务中具有吸引力。在这种情况下,我们将这些纤维投入到随机的硬件投影仪中,将输入数据集转换为较高的尺寸斑点图像集。我们研究的目的是证明,与直接原始图像的训练相比,使用单个逻辑回归层通过训练单个逻辑回归层通过训练进行分类。有趣的是,我们发现所达到的分类精度高于标准传输矩阵模型获得的分类精度,这是一种被广泛接受的工具,用于描述通过无序设备的光传输。我们猜想,这种改善的性能的原因可能是由于硬件分类器在接受纤维数据训练时在损失格局的平坦区域中运行的事实,这与当前的深神经网络理论相吻合。这些发现表明,多模式纤维运行的一类随机预测可以更好地推广到以前看不见的数据,从而将它们定位为具有光学辅助神经网络的有前途的工具。实际上,通过这项研究,我们希望为推进这些多功能仪器的知识和实际利用做出贡献,这可能在塑造神经形态机器学习的未来中起重要作用。

In the domain of disordered photonics, the characterization of optically opaque materials for light manipulation and imaging is a primary aim. Among various complex devices, multi-mode optical fibers stand out as cost-effective and easy-to-handle tools, making them attractive for several tasks. In this context, we cast these fibers into random hardware projectors, transforming an input dataset into a higher dimensional speckled image set. The goal of our study is to demonstrate that using such randomized data for classification by training a single logistic regression layer improves accuracy compared to training on direct raw images. Interestingly, we found that the classification accuracy achieved is higher than that obtained with the standard transmission matrix model, a widely accepted tool for describing light transmission through disordered devices. We conjecture that the reason for such improved performance could be due to the fact that the hardware classifier operates in a flatter region of the loss landscape when trained on fiber data, which aligns with the current theory of deep neural networks. These findings suggest that the class of random projections operated by multi-mode fibers generalize better to previously unseen data, positioning them as promising tools for optically-assisted neural networks. With this study, in fact, we want to contribute to advancing the knowledge and practical utilization of these versatile instruments, which may play a significant role in shaping the future of neuromorphic machine learning.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源