论文标题
与分区相关的自由基利利类型理想的基础
Gröbner bases of radical Li-Li type ideals associated with partitions
论文作者
论文摘要
对于$ n $的分区$λ$,_specht Ideal_ $i_λ\ subset k [x_1,\ ldots,x_n] $是所有SPECHT多项式$λ$生成的理想。 Haiman和Woo在未出版的手稿中表明,$I_λ$是一个根本的理想,并给出了UniversalGröbner基础(最近,Murai等人。另一方面,Li和Li的旧纸研究了类似的理想,而它们的理想并不总是激进的。在本文中,我们介绍了一类理想,这些理想既概括了Specht理想和_radical_li-li理想,又研究了他们的激进性和Gröbner基础。
For a partition $λ$ of $n$, the _Specht ideal_ $I_λ\subset K[x_1, \ldots, x_n]$ is the ideal generated by all Specht polynomials of shape $λ$. In their unpublished manuscript, Haiman and Woo showed that $I_λ$ is a radical ideal, and gave its universal Gröbner bases (recently, Murai et al. published a quick proof of this result). On the other hand, an old paper of Li and Li studied analogous ideals, while their ideals are not always radical. In the present paper, we introduce a class of ideals which generalizes both Specht ideals and _radical_ Li-Li ideals, and study their radicalness and Gröbner bases.