论文标题

深度学习混合物方法用于婴儿和儿童的细胞毒性水肿评估

Deep Learning Mixture-of-Experts Approach for Cytotoxic Edema Assessment in Infants and Children

论文作者

Ghebrechristos, Henok, Nicholas, Stence, Mirsky, David, Alaghband, Gita, Huynh, Manh, Kromer, Zackary, Batista, Ligia, ONeill, Brent, Moulton, Steven, Lindberg, Daniel M.

论文摘要

本文提出了一个深入的图像分类框架,旨在提高婴儿和儿童细胞毒性水肿(CE)诊断的预测性能。提出的框架包括两种优化的3D网络体系结构,可从两种类型的临床MRI数据中学习,痕量扩散加权图像(DWI)和计算出的明显扩散系数图(ADC)。这项工作提出了基于3D图像(使用时间切片的像素)和3D卷积神经网络(CNN)模型的体积分析(使用像素)的强大而新颖的解决方案。虽然在体系结构上很简单,但提出的框架在域问题上显示出显着的定量结果。我们使用从科罗拉多州儿童医院(CHCO)患者注册中心策划的数据集,以报告预测性能F1评分为0.91,以区分CE患者与没有CE的严重神经损伤的儿童。此外,我们对系统输出进行分析,以确定CE与虐待性头部创伤(AHT)的关联,这是一种与滥用相关的创伤性脑损伤(TBI),总体功能结果以及婴儿和幼儿的医院死亡率。我们使用了两个临床变量AHT诊断和功能状态量表(FSS)得分,得出的结论是,CE与整体结果高度相关,并且需要进一步的研究来确定CE是否是AHT的生物标志物。因此,本文介绍了一种简单而强大的基于深度学习的解决方案,用于自动化CE分类。该解决方案还可以对CE的进展及其与AHT的相关性和整体神经系统结局进行深入分析,这反过来又有可能使专家能够诊断和减轻儿童生活的早期诊断和减轻AHT。

This paper presents a deep learning framework for image classification aimed at increasing predictive performance for Cytotoxic Edema (CE) diagnosis in infants and children. The proposed framework includes two 3D network architectures optimized to learn from two types of clinical MRI data , a trace Diffusion Weighted Image (DWI) and the calculated Apparent Diffusion Coefficient map (ADC). This work proposes a robust and novel solution based on volumetric analysis of 3D images (using pixels from time slices) and 3D convolutional neural network (CNN) models. While simple in architecture, the proposed framework shows significant quantitative results on the domain problem. We use a dataset curated from a Childrens Hospital Colorado (CHCO) patient registry to report a predictive performance F1 score of 0.91 at distinguishing CE patients from children with severe neurologic injury without CE. In addition, we perform analysis of our systems output to determine the association of CE with Abusive Head Trauma (AHT) , a type of traumatic brain injury (TBI) associated with abuse , and overall functional outcome and in hospital mortality of infants and young children. We used two clinical variables, AHT diagnosis and Functional Status Scale (FSS) score, to arrive at the conclusion that CE is highly correlated with overall outcome and that further study is needed to determine whether CE is a biomarker of AHT. With that, this paper introduces a simple yet powerful deep learning based solution for automated CE classification. This solution also enables an indepth analysis of progression of CE and its correlation to AHT and overall neurologic outcome, which in turn has the potential to empower experts to diagnose and mitigate AHT during early stages of a childs life.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源