论文标题

重新粉刷和模仿车道检测的学习

Repainting and Imitating Learning for Lane Detection

论文作者

He, Yue, Jiang, Minyue, Ye, Xiaoqing, Du, Liang, Zou, Zhikang, Zhang, Wei, Tan, Xiao, Ding, Errui

论文摘要

当前的车道检测方法正在为由于沉重的阴影,严重的道路降解和严重的车辆阻塞引起的隐形车道问题而苦苦挣扎。结果,由于野外车道固有的隐形性,网络几乎无法学到判别式车道特征。在本文中,我们针对的是找到一个增强的特征空间,在该空间中,车道特征在野外保持相似的车道分布,在该空间中是独特的。为了实现这一目标,我们提出了一个新颖的重新粉刷和模仿学习(RIL)框架,其中包含一对教师和学生,而没有任何额外的数据或额外的辛苦标签。具体而言,在重新粉刷的步骤中,建立了增强的理想虚拟车道数据集,其中只有车道区域被重新粉刷,而非车道区域则保持不变,从而保持野外车道的相似分布。教师模型根据虚拟数据学习增强的判别性表示,并作为学生模型的指导。在模仿学习步骤中,通过拟曲蒸馏模块,鼓励学生网络生成以相同尺度和跨尺度模仿教师模型的功能。此外,耦合的对抗模块不仅建立了连接教师和学生模型,还可以连接虚拟和真实数据的桥梁,从而动态调整模仿学习过程。请注意,我们的方法在推理过程中没有额外的时间成本,并且可以在各种尖端的车道检测网络中进行插件。对于四种现代车道检测方法,实验结果证明了RIL框架对Culane和Tusimple的有效性。代码和模型将很快可用。

Current lane detection methods are struggling with the invisibility lane issue caused by heavy shadows, severe road mark degradation, and serious vehicle occlusion. As a result, discriminative lane features can be barely learned by the network despite elaborate designs due to the inherent invisibility of lanes in the wild. In this paper, we target at finding an enhanced feature space where the lane features are distinctive while maintaining a similar distribution of lanes in the wild. To achieve this, we propose a novel Repainting and Imitating Learning (RIL) framework containing a pair of teacher and student without any extra data or extra laborious labeling. Specifically, in the repainting step, an enhanced ideal virtual lane dataset is built in which only the lane regions are repainted while non-lane regions are kept unchanged, maintaining the similar distribution of lanes in the wild. The teacher model learns enhanced discriminative representation based on the virtual data and serves as the guidance for a student model to imitate. In the imitating learning step, through the scale-fusing distillation module, the student network is encouraged to generate features that mimic the teacher model both on the same scale and cross scales. Furthermore, the coupled adversarial module builds the bridge to connect not only teacher and student models but also virtual and real data, adjusting the imitating learning process dynamically. Note that our method introduces no extra time cost during inference and can be plug-and-play in various cutting-edge lane detection networks. Experimental results prove the effectiveness of the RIL framework both on CULane and TuSimple for four modern lane detection methods. The code and model will be available soon.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源